Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

RNA-seq of eight different poplar clones reveals conserved up-regulation of gene expression in response to insect herbivory.

Identifieur interne : 000743 ( Main/Exploration ); précédent : 000742; suivant : 000744

RNA-seq of eight different poplar clones reveals conserved up-regulation of gene expression in response to insect herbivory.

Auteurs : Niels A. Müller [Allemagne] ; Birgit Kersten [Allemagne] ; Matthias Fladung [Allemagne] ; Hilke Schroeder [Allemagne]

Source :

RBID : pubmed:31455224

Descripteurs français

English descriptors

Abstract

BACKGROUND

Herbivorous insects can have a profound impact on plant growth performance. In some years, canopy damage in poplar plantations exceeds 50% of the total leaf surface, thereby possibly compromising carbon fixation and biomass yield. To assess the transcriptional response of elite poplar clones to insect feeding and to test whether this response varies between different genotypes, we performed an RNA-sequencing experiment. We deeply sequenced the transcriptomes of eight elite clones belonging to three poplar species (Populus trichocarpa, P. nigra and P. maximowiczii), under Phratora vitellinae feeding and control conditions. This allowed us to precisely quantify transcript levels of about 24,000 expressed genes.

RESULTS

Our data reveal a striking overall up-regulation of gene expression under insect attack in all eight poplar clones studied. The up-regulated genes were markedly enriched for the biological process 'regulation of transcription' indicating a highly concerted restructuring of the transcriptome. A search for potential cis-regulatory elements (CREs) that may be involved in this process identified the G-box (CACGTG) as the most significant motif in the promoters of the induced genes. In line with the role of the G-box in jasmonate (JA)-mediated activation of gene expression by MYC2, several genes involved in JA biosynthesis and signaling were up-regulated in our dataset. A co-expression network analysis additionally highlighted WRKY transcription factors. Within the most prominent expression module, WRKYs were strongly overrepresented and occupied several network hubs. Finally, the insect-induced genes comprised several protein families known to be involved in plant defenses, e.g. cytochrome P450s, chitinases and protease inhibitors.

CONCLUSIONS

Our data represent a comprehensive characterization of the transcriptional response of selected elite poplar clones to insect herbivory. Our results suggest that the concerted up-regulation of gene expression is controlled by JA signaling and WRKY transcription factors, and activates several defense mechanisms. Our data highlight potential targets of selection and may thus contribute to breeding insect-resistant poplar clones.


DOI: 10.1186/s12864-019-6048-8
PubMed: 31455224
PubMed Central: PMC6712675


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">RNA-seq of eight different poplar clones reveals conserved up-regulation of gene expression in response to insect herbivory.</title>
<author>
<name sortKey="Muller, Niels A" sort="Muller, Niels A" uniqKey="Muller N" first="Niels A" last="Müller">Niels A. Müller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf</wicri:regionArea>
<wicri:noRegion>22927, Grosshansdorf</wicri:noRegion>
<wicri:noRegion>22927, Grosshansdorf</wicri:noRegion>
<wicri:noRegion>Grosshansdorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kersten, Birgit" sort="Kersten, Birgit" uniqKey="Kersten B" first="Birgit" last="Kersten">Birgit Kersten</name>
<affiliation wicri:level="1">
<nlm:affiliation>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf</wicri:regionArea>
<wicri:noRegion>22927, Grosshansdorf</wicri:noRegion>
<wicri:noRegion>22927, Grosshansdorf</wicri:noRegion>
<wicri:noRegion>Grosshansdorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fladung, Matthias" sort="Fladung, Matthias" uniqKey="Fladung M" first="Matthias" last="Fladung">Matthias Fladung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf</wicri:regionArea>
<wicri:noRegion>22927, Grosshansdorf</wicri:noRegion>
<wicri:noRegion>22927, Grosshansdorf</wicri:noRegion>
<wicri:noRegion>Grosshansdorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schroeder, Hilke" sort="Schroeder, Hilke" uniqKey="Schroeder H" first="Hilke" last="Schroeder">Hilke Schroeder</name>
<affiliation wicri:level="1">
<nlm:affiliation>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany. hilke.schroeder@thuenen.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf</wicri:regionArea>
<wicri:noRegion>22927, Grosshansdorf</wicri:noRegion>
<wicri:noRegion>22927, Grosshansdorf</wicri:noRegion>
<wicri:noRegion>Grosshansdorf</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31455224</idno>
<idno type="pmid">31455224</idno>
<idno type="doi">10.1186/s12864-019-6048-8</idno>
<idno type="pmc">PMC6712675</idno>
<idno type="wicri:Area/Main/Corpus">000735</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000735</idno>
<idno type="wicri:Area/Main/Curation">000735</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000735</idno>
<idno type="wicri:Area/Main/Exploration">000735</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">RNA-seq of eight different poplar clones reveals conserved up-regulation of gene expression in response to insect herbivory.</title>
<author>
<name sortKey="Muller, Niels A" sort="Muller, Niels A" uniqKey="Muller N" first="Niels A" last="Müller">Niels A. Müller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf</wicri:regionArea>
<wicri:noRegion>22927, Grosshansdorf</wicri:noRegion>
<wicri:noRegion>22927, Grosshansdorf</wicri:noRegion>
<wicri:noRegion>Grosshansdorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kersten, Birgit" sort="Kersten, Birgit" uniqKey="Kersten B" first="Birgit" last="Kersten">Birgit Kersten</name>
<affiliation wicri:level="1">
<nlm:affiliation>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf</wicri:regionArea>
<wicri:noRegion>22927, Grosshansdorf</wicri:noRegion>
<wicri:noRegion>22927, Grosshansdorf</wicri:noRegion>
<wicri:noRegion>Grosshansdorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fladung, Matthias" sort="Fladung, Matthias" uniqKey="Fladung M" first="Matthias" last="Fladung">Matthias Fladung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf</wicri:regionArea>
<wicri:noRegion>22927, Grosshansdorf</wicri:noRegion>
<wicri:noRegion>22927, Grosshansdorf</wicri:noRegion>
<wicri:noRegion>Grosshansdorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schroeder, Hilke" sort="Schroeder, Hilke" uniqKey="Schroeder H" first="Hilke" last="Schroeder">Hilke Schroeder</name>
<affiliation wicri:level="1">
<nlm:affiliation>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany. hilke.schroeder@thuenen.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf</wicri:regionArea>
<wicri:noRegion>22927, Grosshansdorf</wicri:noRegion>
<wicri:noRegion>22927, Grosshansdorf</wicri:noRegion>
<wicri:noRegion>Grosshansdorf</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors (metabolism)</term>
<term>Chitinases (metabolism)</term>
<term>Cyclopentanes (metabolism)</term>
<term>Cytochrome P-450 Enzyme System (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Herbivory (MeSH)</term>
<term>Insecta (physiology)</term>
<term>Oxylipins (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Protease Inhibitors (metabolism)</term>
<term>RNA-Seq (MeSH)</term>
<term>Regulatory Sequences, Nucleic Acid (genetics)</term>
<term>Signal Transduction (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Up-Regulation (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Chitinase (métabolisme)</term>
<term>Cyclopentanes (métabolisme)</term>
<term>Cytochrome P-450 enzyme system (métabolisme)</term>
<term>Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines (métabolisme)</term>
<term>Herbivorie (MeSH)</term>
<term>Inhibiteurs de protéases (métabolisme)</term>
<term>Insectes (physiologie)</term>
<term>Oxylipines (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régulation positive (MeSH)</term>
<term>Séquences d'acides nucléiques régulatrices (génétique)</term>
<term>Transcriptome (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</term>
<term>Chitinases</term>
<term>Cyclopentanes</term>
<term>Cytochrome P-450 Enzyme System</term>
<term>Oxylipins</term>
<term>Protease Inhibitors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
<term>Regulatory Sequences, Nucleic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Séquences d'acides nucléiques régulatrices</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chitinase</term>
<term>Cyclopentanes</term>
<term>Cytochrome P-450 enzyme system</term>
<term>Facteurs de transcription à motifs basiques hélice-boucle-hélice et à glissière à leucines</term>
<term>Inhibiteurs de protéases</term>
<term>Oxylipines</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Insectes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Insecta</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Expression Regulation, Plant</term>
<term>Herbivory</term>
<term>RNA-Seq</term>
<term>Signal Transduction</term>
<term>Transcriptome</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Herbivorie</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Régulation positive</term>
<term>Transcriptome</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Herbivorous insects can have a profound impact on plant growth performance. In some years, canopy damage in poplar plantations exceeds 50% of the total leaf surface, thereby possibly compromising carbon fixation and biomass yield. To assess the transcriptional response of elite poplar clones to insect feeding and to test whether this response varies between different genotypes, we performed an RNA-sequencing experiment. We deeply sequenced the transcriptomes of eight elite clones belonging to three poplar species (Populus trichocarpa, P. nigra and P. maximowiczii), under Phratora vitellinae feeding and control conditions. This allowed us to precisely quantify transcript levels of about 24,000 expressed genes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Our data reveal a striking overall up-regulation of gene expression under insect attack in all eight poplar clones studied. The up-regulated genes were markedly enriched for the biological process 'regulation of transcription' indicating a highly concerted restructuring of the transcriptome. A search for potential cis-regulatory elements (CREs) that may be involved in this process identified the G-box (CACGTG) as the most significant motif in the promoters of the induced genes. In line with the role of the G-box in jasmonate (JA)-mediated activation of gene expression by MYC2, several genes involved in JA biosynthesis and signaling were up-regulated in our dataset. A co-expression network analysis additionally highlighted WRKY transcription factors. Within the most prominent expression module, WRKYs were strongly overrepresented and occupied several network hubs. Finally, the insect-induced genes comprised several protein families known to be involved in plant defenses, e.g. cytochrome P450s, chitinases and protease inhibitors.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our data represent a comprehensive characterization of the transcriptional response of selected elite poplar clones to insect herbivory. Our results suggest that the concerted up-regulation of gene expression is controlled by JA signaling and WRKY transcription factors, and activates several defense mechanisms. Our data highlight potential targets of selection and may thus contribute to breeding insect-resistant poplar clones.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31455224</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>Aug</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>RNA-seq of eight different poplar clones reveals conserved up-regulation of gene expression in response to insect herbivory.</ArticleTitle>
<Pagination>
<MedlinePgn>673</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-019-6048-8</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Herbivorous insects can have a profound impact on plant growth performance. In some years, canopy damage in poplar plantations exceeds 50% of the total leaf surface, thereby possibly compromising carbon fixation and biomass yield. To assess the transcriptional response of elite poplar clones to insect feeding and to test whether this response varies between different genotypes, we performed an RNA-sequencing experiment. We deeply sequenced the transcriptomes of eight elite clones belonging to three poplar species (Populus trichocarpa, P. nigra and P. maximowiczii), under Phratora vitellinae feeding and control conditions. This allowed us to precisely quantify transcript levels of about 24,000 expressed genes.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Our data reveal a striking overall up-regulation of gene expression under insect attack in all eight poplar clones studied. The up-regulated genes were markedly enriched for the biological process 'regulation of transcription' indicating a highly concerted restructuring of the transcriptome. A search for potential cis-regulatory elements (CREs) that may be involved in this process identified the G-box (CACGTG) as the most significant motif in the promoters of the induced genes. In line with the role of the G-box in jasmonate (JA)-mediated activation of gene expression by MYC2, several genes involved in JA biosynthesis and signaling were up-regulated in our dataset. A co-expression network analysis additionally highlighted WRKY transcription factors. Within the most prominent expression module, WRKYs were strongly overrepresented and occupied several network hubs. Finally, the insect-induced genes comprised several protein families known to be involved in plant defenses, e.g. cytochrome P450s, chitinases and protease inhibitors.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our data represent a comprehensive characterization of the transcriptional response of selected elite poplar clones to insect herbivory. Our results suggest that the concerted up-regulation of gene expression is controlled by JA signaling and WRKY transcription factors, and activates several defense mechanisms. Our data highlight potential targets of selection and may thus contribute to breeding insect-resistant poplar clones.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Müller</LastName>
<ForeName>Niels A</ForeName>
<Initials>NA</Initials>
<AffiliationInfo>
<Affiliation>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kersten</LastName>
<ForeName>Birgit</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fladung</LastName>
<ForeName>Matthias</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schroeder</LastName>
<ForeName>Hilke</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-0908-3397</Identifier>
<AffiliationInfo>
<Affiliation>Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany. hilke.schroeder@thuenen.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>22000514</GrantID>
<Agency>Fachagentur Nachwachsende Rohstoffe</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051778">Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003517">Cyclopentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011480">Protease Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6RI5N05OWW</RegistryNumber>
<NameOfSubstance UI="C011006">jasmonic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9035-51-2</RegistryNumber>
<NameOfSubstance UI="D003577">Cytochrome P-450 Enzyme System</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.14</RegistryNumber>
<NameOfSubstance UI="D002688">Chitinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051778" MajorTopicYN="N">Basic Helix-Loop-Helix Leucine Zipper Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002688" MajorTopicYN="N">Chitinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003517" MajorTopicYN="N">Cyclopentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003577" MajorTopicYN="N">Cytochrome P-450 Enzyme System</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="Y">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007313" MajorTopicYN="N">Insecta</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011480" MajorTopicYN="N">Protease Inhibitors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000081246" MajorTopicYN="N">RNA-Seq</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012045" MajorTopicYN="N">Regulatory Sequences, Nucleic Acid</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Co-expression network</Keyword>
<Keyword MajorTopicYN="N">G-box</Keyword>
<Keyword MajorTopicYN="N">Insect herbivory</Keyword>
<Keyword MajorTopicYN="N">Jasmonate (JA) signaling</Keyword>
<Keyword MajorTopicYN="N">Phratora vitellinae</Keyword>
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">WRKY transcription factors</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31455224</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-019-6048-8</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-019-6048-8</ArticleId>
<ArticleId IdType="pmc">PMC6712675</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Plant Growth Regul. 2000 Jun;19(2):195-216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Mar 16;291(5511):2141-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11251117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Mar 29;410(6828):577-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11279494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):843-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Oct;87(19):7713-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:629-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1938-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Jul 1;18(13):1577-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2006 Apr;28(8):593-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16614898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Apr;15(5):1275-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(4):617-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:41-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18031220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):952-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18223147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Feb;89(2):392-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18409429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1991 Oct;17(4):631-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1912489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:463-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19152489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Mar;15(3):167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20047849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Apr 30;328(5978):624-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20431015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 May;28(5):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jun 3;465(7298):632-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20520716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Nov;188(3):787-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20955416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 May;16(5):249-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21216178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4674-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22331878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e42326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22879940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Oct 1;7(10):1306-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22895106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2012;2:579</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22900140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Jan 1;29(1):15-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23104886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 May;6(3):686-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23142764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 Jun;111(6):1021-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Oct 28;14:737</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24160444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Dec;80(6):1095-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25335755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2015 Jan 7;60:233-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25341101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2015 Jul 1;565(1):130-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25843624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Jul 23;523(7561):472-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26098366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Dec;208(4):1149-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26192091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Apr 08;7:444</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27092161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2017 Jun 1;37(6):827-844</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28369503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Oct;175(2):628-640</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28864470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2018 Feb;93(4):703-728</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29160609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Jan 17;8(1):909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29343866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Apr;176(4):2639-2656</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29439210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2018 Nov;16(11):1825-1835</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29528555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2018 Apr;42:90-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29704803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2018 Jul;4(7):440-452</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29915331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2018 Oct 30;675:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29935357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Jun 14;9:787</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29963064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Sep 21;9:1408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30298085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):11573-11578</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30337484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Apr;222(1):70-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30575972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2019 Apr;28(7):1801-1811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30582660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2019 Mar 7;9(3):709-717</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30617214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7584402</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Muller, Niels A" sort="Muller, Niels A" uniqKey="Muller N" first="Niels A" last="Müller">Niels A. Müller</name>
</noRegion>
<name sortKey="Fladung, Matthias" sort="Fladung, Matthias" uniqKey="Fladung M" first="Matthias" last="Fladung">Matthias Fladung</name>
<name sortKey="Kersten, Birgit" sort="Kersten, Birgit" uniqKey="Kersten B" first="Birgit" last="Kersten">Birgit Kersten</name>
<name sortKey="Schroeder, Hilke" sort="Schroeder, Hilke" uniqKey="Schroeder H" first="Hilke" last="Schroeder">Hilke Schroeder</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000743 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000743 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31455224
   |texte=   RNA-seq of eight different poplar clones reveals conserved up-regulation of gene expression in response to insect herbivory.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31455224" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020